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ABSTRACT

Current large language models have shown an inability
to provide age-appropriate answers to students across the K-
12 spectrum when provided with limited context on the stu-
dent. This has consequences for potential applications within
the education sector, where these technologies may look to
be used as chatbots to assist with learning to help alleviate
stressors in the industry. This report has tried to address this
limitation by using Direct Preference Optimisation preference
modelling to fine-tune two model architectures on a novel
dataset of preference pairs. The dataset contains questions
with added context of the students’ grades from the K-12
range and has been evaluated by an independent teacher for
suitability. The optimised models showed a significant im-
provement in providing age-appropriate responses when as-
sessed by a separate primary school independent teacher and a
graduate student. The study highlighted difficulties for learn-
ing age-appropriate answers to questions by students in mid-
dle school and linked the difficulties to a lack of understand-
ing of the exact knowledge level of the student. The mod-
els have also been benchmarked against the untrained model
on common problem-solving benchmarks. Optimised models
were shown to perform on par with the base model, demon-
strating that improvements in age-appropriate responses do
not sacrifice the models’ problem-solving capabilities. The
code for this study has been can be found here1.

1. INTRODUCTION

Large language models (LLMs) such as OpenAI’s GPT-4[1]
have changed the way many of live and work. Being able
to ask questions on nearly any topic and receive a well-
crafted and often correct response has given people newfound
abilities for productivity in both the workplace and higher
education.[2][3] These models have shown to have good
problem solving abilities across a range of fields, including
being able to pass a simulated bar exam among the top 10%
of test takers.[1]

For many researchers, advancing the state of the art in
LLMs involves improving their ability to solve increasingly
complicated tasks and questions in increasingly intricate, ac-
curate and detailed ways.[4] While true and important for

1https://github.com/phil-mira/NLP new

many applications, in others, the opposite is required. To
quote Richard Feynmann, the great Physicist and educator,
”If you cannot explain something in simple terms, you don’t
understand it”. In the educational setting, being able to ex-
plain a topic based on the receiver’s level of understanding is
a skill of the upmost importance. It requires a deep under-
standing of what the key ideas of the topic are, to be able to
convey them at such a level without confusing the student.
This is universal, from children learning how to read to col-
lege students learning Natural Language Processing. Unfor-
tunately, explaining complex topics to young children can be
quite tricky, like ”Why is the Sky Blue?” or ”Who named
the days of the week?” To effectively answer these types of
questions without confusing the child requires a good under-
standing of the question itself, but also a good understanding
of what the child would understand. If you ask ChatGPT to
explain the answer to either of these questions as if it were
talking to a 2nd grade child, it produces answers that would
likely only confuse them more. In the first question, the Chat-
bot discusses ideas related to the scattering of light waves in
the atmosphere, highlighting how blue gets scattered more
than other colours. Although correct, immediately one can
highlight that a 2nd grader would have no idea what you are
talking about and that a simple answer such as; ”because the
light from the sun is actually made up of all the colours of the
rainbow and when it gets to earth they all disappear except
blue which shines through” would be far more suitable. This
somewhat humorous experiment can be repeated on websites
such as Chatbot Arena[5], where they all seem to fail with
young children at explaining common topics in a very simple
way.

The education sector in the UK and in many countries
around the world is currently facing a crisis. [6][7] The lack of
teachers around the world is having an impact on the quality
of education being provided to children. In developing coun-
tries this has been a persistent problem for many years that
requires significant investment to overcome. However, devel-
oped countries are now facing similar problems, particularly
in the elementary or primary school environment. In the UK,
the recruitment of new trainee teachers for the primary sector
reached just 88% of the intended target, decreasing year on
year from 94%.

The education sector has rapidly embraced technology,
with teachers and schools continually seeking innovative and
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effective ways to enhance student learning.[8] AI, particularly
large language models (LLMs), is a promising technology
that could significantly enhance learning and help address the
challenges posed by declining teacher numbers.[9] Imagine
a scenario where each student has access to an LLM to help
them learn to read and write and answer questions that they
have on an individual basis, with teacher there to monitor and
supervise the children as they learn. Although there exist crit-
icisms to this particular scenario introduced by a lack of so-
cial interaction between students and teachers, the point still
holds that there is a unique potential for LLMs to transform
this sector.

Context reasoning forms a crucial part of evaluating LLM
performance and is ultimately what this study is exploring and
trying to improve. For this study, improving the model’s un-
derstanding of the knowledge level of a child is the goal. In
theory, this could be achieved by providing the model with a
significant amount of contextual information about the child’s
current knowledge level and ability. In some ways, this sce-
nario would be an accurate reflection of how a teacher in a
school would know the level of understanding of each of their
pupils. However, providing the model with significant context
does not cover the human ability to provide suitable answers
to children given very little information about them. In other
words, it does not reflect the human ability to reason about
child development stages with limited context.

This report investigates whether an LLMs’ lack of adapt-
ability from a limited student context description can be im-
proved by model-fine tuning. Two main research questions
have been posed to guide this study: 1) Can Preference Mod-
elling be used to improve the use of LLMs for age suitable
answers when provided when limited context? 2) Do opti-
mised models exhibit performance losses in other tasks that
may affect ability to answer questions correctly?

These questions have been approached by attempting to
fine-tune a pre-trained Mistral 7B [10][11] parameter model
using direct preference optimisation (DPO) [12] on prefer-
ence pairs of data to see if existing methods to tailor mod-
els to specific tasks are effective. The preference pairs have
been produced in consultation with a qualified school teacher.
The models have been evaluated by having a human choose
which model produced the most suitable answer. For the stu-
dents between the grades kindergarten and 3rd grade, a sep-
arate primary school teacher has been consulted to evaluate
the results of each of the models. The models have also been
evaluated against common benchmarks to assess whether the
new model has lost performance in other domains.

The main contributions of this work have been a novel
dataset of preference pairs that can be used to fine-tune an
LLM to produce more age-suitable answers to student ques-
tions from grades K-12. As well as a systematic evaluation of
the performance of models trained on this dataset.

2. LITERATURE SURVEY

Bewersdorff et al. [13] introduced a framework for how mul-
timodal large language models (MLLMs) can be used to ad-
vance science education. They highlighted how these models
are well-suited for a range of applications, including content
creation to tailored support for learning, fostering engage-
ment in scientific practices, and providing assessments and
feedback.

Lee et al. [14] trained a multimodal model using a vicuna-
13b-v1.5 LLM and clip-vit-large-patch14 vision encoder on a
custom dataset termed LLaVA-Docent to support art appreci-
ation in education. The researchers consulted several subject
matter experts to design the training dataset. They noted that
the models should be specific to the target audience and adjust
the response accordingly. To cater to their specific task, they
primarily used prompt engineering to fine-tune their outputs.
They tested their model in a few-shot learning environment
against Open AI’s GPT-4. Despite highlighting this in their
prompt, they provided no analysis of whether the model was
successfully able to cater towards the individual’s level. Fur-
thermore, the prompts provided were largely generated using
GPT-4 which as highlighted lacks the ability to appropriately
adjust answers based on the user’s grade. The authors provide
an analysis that their specific model lacks rigour in accuracy
as well as suitability in real-world environments, and suggest
possible RAG frameworks as well as further research to ad-
dress these issues.

Liu et al. [15] performed a study where they trained a
chatbot to act as a reading companion to students to assist
them in reading and comprehension of the book. The chat-
bot had a basic understanding of the book and showed that
Children enjoyed more interaction and understanding of the
book when accompanied with the chatbot. This chatbot how-
ever was a basic model based on Google Actions Framework
and had no knowledge outside of these tasks. This study does
provide motivation for the value that chatbots can add to the
educational environment.

Ling and Afzaal [16]present a comprehensive evaluation
of the use of large language models (LLMs) for the auto-
matic generation of question-answer (QA) pairs in higher
education. Acknowledging the time-consuming nature of
manual assessment creation, the study explores three promi-
nent LLM-based approaches—pipeline, joint, and multi-
task learning—evaluated through automated metrics, teacher
feedback, and real-world classroom performance across three
computer science courses. The findings indicate that the
multi-task approach, particularly when using the T5 model,
outperforms others in generating accurate and pedagogically
relevant QA pairs. Teachers reported high satisfaction with
question correctness and relevance, although they noted room
for improvement in the clarity and difficulty of distractors.
Notably, students who engaged with the automatically gener-
ated assessments demonstrated significantly higher academic



performance, and a positive correlation was found between
the number of assessment attempts and final exam scores.

Pitis, Xiao, Le Roux and Sordoni [17] highlight the im-
portance of context in the often underspecified nature of
natural language and develop methods to improve preference
modelling using a two-stage approach that first identifies
the context before providing preferences. They develop
a context-conditioned preference dataset to investigate the
ability of language models to evaluate context-specific pref-
erence. They show preference models benefit from, but fail
to fully consider, added context.

Maity, Deroy, and Sarkar[18] explore the application of
large language models (LLMs) for generating educational
questions from school-level textbooks, addressing the labour-
intensive nature of manual question creation. Their study
investigates the capability of GPT-4 Turbo, GPT-3.5 Turbo,
Llama-2-70B, Llama-3.1-405B, and Gemini Pro—to gener-
ate “complete sets of questions” and classify them according
to Bloom’s revised taxonomy[19]. Using both zero-shot
and eight-shot prompting techniques, the authors assess the
generated questions through human evaluation based on cov-
erage, grammaticality, usefulness, accessibility, relevance,
and redundancy. Findings reveal that while human-generated
questions consistently outperform LLMs, few-shot prompt-
ing significantly improves LLM performance, particularly
for GPT-4 Turbo and Llama-3.1-405B. The eight-shot setting
enhances alignment with pedagogical frameworks, reduces
redundancy, and yields questions with improved cognitive
diversity. This study distinguishes itself from previous AQG
research by incorporating textbook-derived educational con-
tent and systematically evaluating outputs against cognitive
learning objectives. It underscores the growing potential
of LLMs to support educators by generating high-quality,
curriculum-aligned questions that foster critical thinking
across a spectrum of learning outcomes.

Rooein et al. [20] conducted a comprehensive evalu-
ation of four state-of-the-art LLMs (two commercial and
two open-source) to assess how well they adapt their re-
sponses to different age groups and education levels when
explicitly prompted. Using standard readability metrics to
evaluate responses to science questions, their findings re-
vealed that current LLMs have predetermined readability
ranges and struggle to adjust their content appropriately for
different audiences—even when specifically instructed to do
so. Their analysis looked at audiences between the ages
of 11 to 23 and showed that on average, only about 15%
of LLM-generated responses fell within the recommended
readability range (based on the Flesch-Kincaid Reading Ease
Index (FKRE)for the requested audience. This limitation
poses a significant challenge for educational applications,
where age-appropriate content is essential for effective learn-
ing. The researchers concluded that while LLMs demonstrate
some potential for educational use, their current inability to
reliably adapt to different audience demographics restricts

their effectiveness as educational tools without significant
improvements in audience-specific content generation. This
study has many parallels with the work carried out in this
report, with this report attempting to build on some of the
highlighted problems with current LLMs.

To the best of my knowledge, no studies have investigated
the capability of fine-tuning a large language model (LLMs)
to the specific task of providing age-appropriate answers suit-
able to school-aged children across K-12 with limited context.

3. BACKGROUND AND PRELIMINARIES

This section provides a basic overview of Transformer LLMs[21]
as well as direct preference optimisation[12], which has been
used for fine-tuning, leading to a description of how the
models have been used in this study. A basic theoretical hy-
pothesis is made on why the attention layer in transformer
models, combined with direct preference optimisation, is
suitable for the task.

3.1. Transformers and Attention layers

Transformers form the backbone of many modern deep learn-
ing models, with the attention mechanism being the key
mechanism in these architectures. The underlying principles
of attention layers have been around since the 1980s[22],
however, they were first described in their current form in
the 2010s[23][24] and successfully implemented into Trans-
former architectures in 2017.[21] The core idea behind at-
tention in language modelling is that, after the input text is
tokenised and assigned both positional and input embeddings,
the attention layer calculates how strongly every other token
influences each token. For text generation this means that ev-
ery token generated has the knowledge of every word before
it, along with how each of those words relates to every other
word.

For language modelling, masked-attention is used, which
ensures that during training, future tokens do not get attended
to along with multi-headed attention, which expands the num-
ber of parameters in each layer by having multiple ”heads”
that focus on different features before being combined. The
mistral-7B parameter model also uses sliding window atten-
tion [25][26] to improve computational efficiency.

A single head of Attention for Multi-headed attention can
be defined as:
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matrices, dk = d/h is the embedding dimension for each
head in multi-headed attention and Ai ∈ Rn×n denotes the
full attention matrix for each attention head in multi-headed
attention.

For this study this contextual understanding is vital to the
performance of the model in this setting, as it is ultimately
what is being investigated. Thus, for the model to be suc-
cessful, it most have both a sufficient understanding of what
it means to be in each grade, but also provide enough weight
to this token such that generated text keeps it ”in mind” for
every word it uses. This weighting between words is pro-
vided by the A term in the equation, which is a matrix of size
n2. Inspecting this matrix gives insight into how the model
is learning contextual-dependencies. However, as a different
A is learned for each head and at each layer, these heads and
layers need to be either individually inspected or aggregated
in some way to allow comparisons between models.

3.2. Model Fine Tuning

LLM fine-tuning is the process of steering a model to have
more precise control over the behaviour it exhibits. It is often
used at deployment for areas such as chat-bot content moder-
ation and censorship of material. In theory, the model should
be able to produce outputs that are more suitable for a given
age group once given more information about what a more
suitable answer is, as preference modelling can adjust the at-
tention weights of the model to pay more attention to the im-
portant contextual clues in the prompt.

The prevailing method to achieve this uses pairwise pref-
erence datasets of different outputs and training the mod-
els using Reinforcement Learning from Human Feedback
(RLHF) [27][28] or more computationally efficient methods
such as Direct Preference Optimisation (DPO) [12]. The
goal of RL-based models is to find a LLM policy π, whose
response y given an input x maximises a reward function
r(x, y).

The Bradley-Terry (BT) model [29] is used to model the
reward from the preferences of the preference dataset. It says
that the human preference distribution p∗ or the probability
that y1 is preferred to y2 can be written as:

p∗(y1 ≻ y2 | x) = exp(r∗(x, y1)

exp(r∗(x, y1)) + exp(r∗(x, y2))
(2)

Where r∗ is the reward model of preferences to be
learned. DPO avoids the training of a reward model, which
is used in RLHF, which can be unstable and expensive to
train. Instead, the analytical solution of the RLHF objective
is rearranged to derive a reward given by:

r(x, y) = β log
π(y | x)

πref (y | x)
+ β logZ(x) (3)

where τ controls the deviation of the KL-divergence in
the reward function for RLHF and Z(x) is a normalisation

constant. This can then be combined with the BT model for
the following DPO objective function:

L = −E(x,yω,y1)∼D(B)

B = log σ

(
β log

πθ(y | x)
πref (yω | x)

− β log
πθ(yl | x)
πref (yl | x)

)
(4)

4. METHODOLOGY

4.1. Context of Work

For now, the model is considered to be used as a learning tool
whereby a student may ask it questions with responses suit-
able for their grade. At the younger ages it is not intended to
enhance reading ability, but it should, to the best of its ability
produce an answer that the student would both be able to read
and/or listen to.

It should be noted that there is the problem that arises
from differences in oral comprehension and written compre-
hension in young children, for example the disparity even be-
tween children can be significant. For this study, it is assumed
that the child would have access to both the written and spo-
ken versions of the text. Although this may not be the most
effective method to teach a child to read and write, it provides
a means to provide sufficient answers to questions without
running into the difficulties involved with the child’s reading
ability. Although oral and written comprehension are not mu-
tually exclusive, they need to treated in such a way that a child
must be able to understand the question in at least one of the
formats, preferably both.

4.2. Preference Pairs Dataset Creation

As highlighted in section 3.2, DPO requires a dataset of pref-
erence pairs to steer the model towards producing answers
that are suitable for the task at hand. No existing datasets
could be found that were suitable for this task, and so a new
one has been developed.

The dataset needed to capture the nuances that may appear
in answers to student questions. Depending on the student’s
level, the preferred responses should steer the model away
from unsuitable answers.

To achieve this, three main aspects were considered: the
amount of context about student provided to the model, the
structure of the student’s questions, development of prefer-
ence pairs.

In total, 200 questions and sets of preference pairs were
generated with target grade levels of the students having an
even coverage across the K-12 range.

4.2.1. Amount of Context of Student

As highlighted in the introduction this study intends to use
only a limited context of the student in the prompt. For this



study, it was decided that only the grade level of the student
would be provided to the model. Each question has been com-
bined with a starting prompt sentence following the basic for-
mat of ”I’m in xth grade.” Where x is some grade in the K-12
range. This was chosen based on the reasoning that with only
this limited piece of information an answer that was suitable
for that grade should be able to be generated, akin to the hu-
man capability.

There are clearly issues with regards to what is considered
the ability of a child at each grade level, as this may vary
significantly between countries and individuals. This problem
has been discussed in the development of preference pairs.

4.2.2. Structure of Questions

Questions asked by different grade levels can provide an addi-
tional level of context to the model that may be able to affect
how it produces answers. For example, suppose the model
is asked about the I-V characteristics of LED and Filament
lightbulbs by a high-school student. This question implies
that the student is aware of the types of lightbulbs and likely
has a general understanding of electrical circuits. This means
the model can then tailor the answer to create a more suit-
able response based on this information, possibly ignoring the
context that the child is in high school, thereby degrading the
ability to teach the model the importance of this information.
To mitigate this, the questions in the dataset are simplistic but
have the potential to be possible questions across the grade
spectrum. For example, the question of ”How to aeroplanes
fly?” is a question that a kindergartener may ask, but also can
be explained in immense detail even beyond what is under-
stood by most high-school students.

In terms of topics, questions covered a wide range of sub-
jects including maths, science, geography and history. For
some areas, generating suitable questions becomes more am-
biguous, such as within maths, where younger students are
not exposed to topics that may be as advanced as readily when
compared with science, where simple observations can have
complex answers.

All questions followed the same format, with the grade of
the student as the first sentence of the prompt, followed by
the question being asked. An example of this can be seen in
Figure 1.

4.2.3. Development of Preference Pairs

Preference pairs have been created through a mix of text gen-
eration via a more power LLM and hand-crafting. The re-
sponses were then assessed by a school teacher recruited for
the study to ensure that the answers for the age groups were
suitable. The teacher was told to rank and evaluate whether
the chosen preference pair was suitable or not, and to provide
feedback if the answer was not suitable for the age group.
The criteria for evaluation were on a scale of: 1 for not suit-
able, 2 for somewhat suitable and 3 for suitable. The teacher

Fig. 1. An example of the structure of the preference pairs
as well as examples of the questions being asked and their
responses.

was told to consider both the reading and listening levels of
the students in their analysis. This was particularly important
for younger age groups, where there is a large gap between
reading and listening comprehension. This feedback was then
used to update the responses. This feedback also helped alle-
viate some of the problems associated with knowing the level
of understanding of students at each grade level. Although,
this solution is insufficient across all schools, it does provide
a grounding for schools located in the UK and the US, where
this teacher had knowledge and experience teaching in.

Initially, a chatbot was prompted to generate preference
pairs for the questions given the age. The responses were
then evaluated and adjusted by hand to ensure that they were
suitable. To improve the quality of the data, preference pairs
were adjusted so that they were very similar in response, but
key differences were made to make one of them more suitable
than the other. This is in contrast to using a response suitable
for a kindergarten as the rejected response when prompted by
a question for a 12th grader. Having to manually adjust all
responses limited the size of the dataset that could be gen-
erated due to the time spent on each question. However, re-
search has shown that for reinforcement learning from human
feedback [27], another method for LLM fine-tuning, dataset
quality may be more important than scale for achieving the
desired performance. [30] It is also not possible to generate
accurate responses from the LLM, as it is an inherent flaw in
the current state-of-the-art models. [20]

4.3. Model Training Methods and Architectures

Two different training methods were used to explore poten-
tial improvements in the models. Both of these models were
optimised using DPO due to the computational advantages of
using it and the limited amount of data available to effectively
train a reward model.

In the first model, termed the All Grades Model, the LLM



Fig. 2. Two separate models were trained to experiment
whether improvements can be gained by using subsets of the
data for specific tasks. The All Grades Model used all of the
data in the dataset, while the School Group Model splits the
data between Primary, Middle and High school in a Mixture
of Experts fashion.

Fig. 3. Two trained Primary School Teachers were recruited
as expert evaluators to assess both the dataset and the re-
sponses of the models.

was fine-tuned on the entire preference dataset for each of the
different age grades. In the second model, termed the School
Group Model, three separate LLMs were used, one for each
school group (Primary, Middle and High Shcool) in a sort of
Mixture of Experts style design. For example, all preference
pairs for Kindergarten to grade 5 were used to train the pri-
mary school model, whereas those for 6-8 were used in the
middle school model. In the model pipeline the model as-
sesses which age group LLM to send the prompt to, given
that all prompts follow the same format, and returns the an-
swer only from that specific prompt.

4.4. Model Evaluation

The performance of the responses needed to be evaluated
in the context of how suitable the answer was for the grade
level. The hardest demographic for this was the primary
school grades. This was due to the type of language and
topics used to explain these topics to them, which teachers of

middle school and high school need to worry less about. For
this reason, an external primary school teacher was recruited
to evaluate these responses. This teacher was different to the
teacher who was used to evaluate the preference pairs, this
was done to help reduce bias. For the responses for older
grades, a graduate student evaluator was used. An avenue for
future work may be to evaluate whether LLMs are able to
perform this evaluation task instead of humans.

The test dataset used for evaluation consisted of questions
following the same format as discussed in the fine-tuning
stage. The questions again covered a range of topics. Each
of the primary, middle and high school groups was evenly
covered. A total of 72 questions were created.

The base model was compared to the full model and the
mixture of models separately. This was chosen over having
three possible responses for each question to help reduce the
load on the evaluator. It is theorised that too many options
can lead to decreased decision making ability, this is known
in cognitive science as ”cognitive load theory”.[31]

The following criteria was used for evaluation: 0 for Nei-
ther response is suitable, 1 for First Response is Best, 2 for
Second Response is Best, 3 for Responses are Equally Good.
Incorporating the 0 and 3 criteria allows a more comprehen-
sive evaluation of how the models are performing. The eval-
uator was not told which responses were from the trained and
untrained model.

The models also needed to be benchmarked against com-
mon problem-solving datasets. This is to ensure that there is
no loss in the ability of the models to generate correct answers
for a range of problems, which would degrade the efficacy of
the model in an educational setting. The following bench-
marks were used for evaluation: AI2 Reasoning Challenge
(ARC)[32], HellaSwag[33], GSM8k[34], Measuring Massive
Multitask Language Understanding (MMLU: formal logic,
high school world history, high school geography, high school
government and politics, high school biology, high school
chemistry)[35], SciQ[36]. These were chosen for their rel-
evance to the study and their range of topics.

5. IMPLEMENTATION

The study makes use of Hugging Face to fine-tune the models.
Hugging Face allows users to download open-source models
and easily train them using a wide variety of available options
to choose from, making it fast and straightforward to develop
the models.

As discussed, the data was created through a mixture of
generative means using Openai GPT-4 and adjusting answers
manually. The data was placed into a JSON file of preference
pairs following the format that was specified by the model
being used. Short scripts were also written to convert the data
into a txt document format for evaluation by the teacher.

The model that was used was a chatbot fine-tuned version
of the Mistral-7B model from teknium[37] on HuggingFace.



This model was chosen as it boasts improvements over the
standard Mistral AI 7B Instruct fine tune on common bench-
marks. The 7B parameter model was used as a trade-off be-
tween performance and size. As the model was producing
answers that would be reviewed by an external assessor, the
model needed to be powerful enough to produce coherent an-
swers while also being small enough to run on a single GPU.

Google Colab was used for the training and inference of
the model thanks to readily avaliable A100 GPUs. Due to
the size of the model chosen this was the only available GPU
on Google Colab that would be able to fine-tune the model
efficiently due the memory constraints.

This model had a specific format that all of the prompts
needed to follow. This formatting was handled by a function
at the start of each script, which also added the additional sys-
tem prompt to better guide the optimisation as seen in Figure
1. For the School Group Model, this included additional logic
to handle selecting the correct model to use for the level of the
question.

To further speed up the optimisation as well as reduce
computational and memory loads several additional tech-
niques were used. Firstly, quantisation of the model parame-
ters was used to reduce the memory footprint, the parameters
of which were chosen based on the guidance from the Hug-
ging Face documentation. Secondly, Low Rank Adaptation
(LoRA) was used as the trainable parameters of the model.
LoRA freezes existing model parameters and instead places
tunable rank decomposition matrices into each layer of the
model. This acts to greatly reduce the number of trainable
parameters and speed up training. QLoRA (Quantised Low-
Rank Adaptation)[38] is the technique that combines these
two methods together and has been used for model tuning.
The tunable parameters used were again taken from the Hug-
ging Face documentation. Lastly, Flash Attention 2 has been
utilised, which is a hardware-aware algorithm that greatly
improves the GPU utilisation by minimising non-matrix mul-
tiplication operations, allowing larger models to be used.
Additional hyperparameters of the model have been reported
in Table 5. Note that due to computation restrictions, these
were not fine-tuned and were taken from DPO tutorials on
the Hugging Face website.

Due to computational restrictions, the maximum length
of the response sequences was limited to 200 tokens. Al-
though for older age groups, this meant that responses were
cut off, answers were still able to be evaluated effectively by
the evaluators. A total of 200 steps has been used for each
model again to reduce computational load, this was used over
epochs to ensure the same amount of data was used to train
each model. Each of the trained models have been uploaded
to Hugging Face for future use. This included each of the
individual expert models (i.e. Primary, Middle and High).
Weights and Biases has been used to track the training of each
of the models. Generally, all of the models appear to be learn-
ing to choose the correct preference, low losses and high and

Table 1. Training Hyperparameters of the models.

Parameter All Grade Model School Group Model

Rank-LoRA 16 16
Alpha-LoRA 16 16
Dropout-LoRA 0.05 0.05
int8 Threshold 6.0 6.0
4-Bit - QLoRA nf4 nf4
Batch Size 4 4
Learning Rate 5e−5 5e−5
Scheduler Cosine Cosine
Optimizer AdamW-32bit AdamW-32bit

Fig. 4. Training Loss curves for each of the models, smoothed
to provide improved visualisation of progress. Terminated af-
ter 200 steps.

increasing reward margins.
For the benchmarking of the models the EleutherAI LM

evaluation harness has been utilised[39]. This framework al-
lows fast and convenient benchmarking of the models once
uploaded to Hugging Face. The benchmarks that have been
used are specified in section 4.4.

For the visualisation of the attention layer all the layers
and their heads have been combined by averaging all the
weights together. Although this fails to capture the intricacies
of each of the dependencies it provides a general sense of the
relationships that the model is prioritising.

6. EXPERIMENTAL RESULTS AND ANALYSIS

The results from the evaluators’ responses to the test ques-
tions, shown in Figure 6, indicate that both of the optimised
models appear to be producing better answers to the test ques-
tions across all of the grade levels. Interestingly, the biggest
improvement comes from the Primary school grade range,
where both models vastly improved responses to the ques-
tions. This is particularly useful as this was the group that
was largely underperforming during the exploration phase of
this study. The questions where the model performs worse
than the base are generally in the older age groups for the pri-



Fig. 5. Reward Margin for each of the models, defined as
the mean difference between the chosen and corresponding
rejected rewards, smoothed to provide improved visualisation
of progress. Terminated after 200 steps

Fig. 6. Bar Chart of the responses from the evaluators when
comparing each of the optimised models against the base
model. Evaluators were given the option to choose either
none of the models or both if the answers were just as suit-
able. Choices have been split by school group for analysis.

mary group (4th and 5th grade), where the optimised model
tends to prioritise more simplistic answers over those that are
correct.

For the middle and high school age groups, although there
is generally an improvement across both models, it is gener-
ally less pronounced than for the primary school group, save
the All Groups model on the High school group, which per-
forms on par with that of the primary school group. During
evaluation, it was found that generally these answers were
harder to distinguish between, resulting in ”both” being cho-
sen more for these groups.

The ”All Groups” model appears to perform best between
the two models. This may be caused by the model learning
stronger relationships between the different groups to allow
it to complement the answers better. However, it is unclear
exactly why this is. What can be seen is that at the extremes,
i.e. Primary and High school groups, the answers are of bet-
ter quality in the optimised models. This may be because the
Middle school age group is more nuanced in terms of the level
the students may be at. For these age groups more context
may be required than simply the grade, as the gap between
knowledge levels is more subtle compared with the extremes.
For example, for science based questions a high school stu-
dent should have good understanding of some mathematical
concepts and basic theory to be able to understand complex
topics however for middle school student it is unclear at what
age they might be exposed to this topic so choosing whether
to include that in the response becomes more difficult.

This hypothesis may be further supported by the analysis
of the attention weight heatmaps, shown in Figure 7. In it,
the All School Children model appears to be ”paying more
attention” to the part of the prompt related to the grade of
the student. This shows that the model is realising the impor-
tance of this context for the answer, however, it may simply
not fully understand what it means to be in a certain grade.
This would make it struggle for grades where it is less clear
of what that age group may know, such as in middle school
years. This may also be a problem even for humans to pro-
vide answers to students for this age group when there is a
limited context of a student’s ability as it is less clear at what
age certain topics are taught at middle school without making
unrealistic assumptions.

Table 2. Table of all the benchmark results for each of the in-
dividual LLMs trained. The ARC benchmark used the Chal-
lenge dataset while the MMLU used an average of the topics
in section 4.4.

Benchmark Base All Primary Middle High

ARC 0.56 0.57 0.56 0.56 0.57
GSM8k 0.64 0.64 0.64 0.64 0.65
HellaSwag 0.63 0.63 0.64 0.63 0.63
MMLU 0.62 0.61 0.60 0.60 0.60
SciQ 0.96 0.96 0.96 0.96 0.96

The second research question involved assessing whether



Fig. 7. Attention Layer Weights heatmap averaged over all
Layers and Heads for the All School Children Model (Top)
and Base Model (Bottom). The prompt, along with the begin-
ning of the response, has been included.

the optimised models experienced any performance losses on
common benchmarks that may inhibit their problem-solving
ability. Table 6 shows the results from the benchmarking. In it
all of the models perform on par or better with the base model
for all benchmarks, save that of MMLU where the optimised
models perform slightly worse. Not only does this provide
confidence that there is no performance drop during optimi-
sation, but also, reinforces the hypothesis that the model is
using the context from the grade levels in its answers only
when prompted.

7. CONCLUSION

In this study, LLMs have been successfully optimised for the
task of improving answer suitability for school-aged children
in K-12 schools. This has been achieved with limited re-
sources using Direct Preference Optimisation on open-source
LLMs from Hugging Face. An original dataset of preference
pairs for the preference modelling has been developed for this
study. This dataset has been validated by an independent
teacher with experience teaching across K-12, to ensure the
suitability and accuracy of the preference pairs. Two separate
architectures were tested to enhance the breadth of the study
and explore potential alternatives. The first architecture was
a single LLM trained on the complete dataset. The second
architecture consisted of three separate LLMs, each trained
on subsets of the data as Primary, Middle and High school
experts with an identifier function for model selection.

The optimised models have been evaluated on a test
dataset of questions of the same format of the preference
pair prompts by a separate independent teacher for primary
school student aged questions and by an MSc-level student
for the middle and high school student aged questions. The
evaluations showed a marked improvement in performance
for all age groups in both models, particularly that of the
primary school group. The study highlighted insufficien-
cies in the Middle School age group and linked it to an
inability to successfully identify the knowledge level of these
students. The models have also been benchmarked across
common benchmarks, showing that there has not been a
drop in problem-solving ability as a result of the preference
modelling.

Future work may look to explore how knowledge gained
from this study can be applied to technologies within a real-
world educational setting and look to work further with teach-
ers to apply chatbots to schools to ease current problems fac-
ing the sector.
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