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ABSTRACT

This research explores resource-efficient approaches
to melanoma classification from dermoscopic images, ad-
dressing the challenge of operating under computational
constraints in the context of the SIIM-ISIC 2020 competi-
tion. While top-performing submissions typically employ
ensemble methods with multiple models trained on exten-
sive datasets over several days using powerful GPU clus-
ters, we demonstrate that competitive performance can be
achieved with significantly fewer resources through strategic
data sampling and model selection. Our approach focuses on
constructing a smaller, high-quality dataset of 3,987 images
(compared to the original 33,126) by maintaining diversity
across patients while preserving all melanoma cases, which
resulted in a model that achieved a ROC-AUC of 0.845 on the
competition test data. This represents a substantial efficiency
improvement, reducing training time from hours to min-
utes while maintaining performance comparable to models
trained on the full dataset. We also investigated specialized
models based on sex and image brightness characteristics,
though these underperformed due to insufficient data for
separate feature extractors. Our findings suggest that in med-
ical imaging applications with highly imbalanced datasets,
thoughtful dataset construction can be more valuable than
raw data volume, making accurate melanoma detection more
accessible in resource-limited healthcare environments. This
work contributes to the broader effort of developing efficient
Al solutions for medical applications where computational
resources may be limited but diagnostic accuracy remains
critical. [1]

1. INTRODUCTION

Machine learning is widely recognized as a transformative
force in the medical industry, with one of its most promis-
ing applications being medical imaging—particularly image
classification. This technology offers the potential to assist in
diagnosing medical images without requiring the constant in-
volvement of highly specialized doctors. As a result, it could
significantly reduce pressure on healthcare resources. In the
UK, doctors are already facing high levels of demand, and
dermatologists are no exception. Dermatology, in particular,

UThe code for this paper can be found here.

stands to benefit greatly from advancements in medical imag-
ing powered by machine learning.

Skin cancer is one of the most common forms of can-
cer, with melanoma being the fifth most prevalent in the
UK—accounting for 5% of all new cancer cases between
2017 and 2019.[1] Melanoma is the most invasive type of
skin cancer and carries the highest risk of mortality, making
it a key focus in the field of skin cancer image detection.

Traditionally, the diagnostic process for melanoma begins
with a visual examination of the mole. Dermatologists assess
specific characteristics commonly associated with melanomas
before deciding whether to proceed with further steps such
as mole removal, biopsy, and treatment.[2] Early detection is
critical to improving survival rates, which makes widespread
initial screening essential. Enabling efficient and accessible
early-stage assessments for as many patients as possible is
therefore a top priority. [3]

The Society for Imaging Informatics in Medicine in col-
laboration with the International Skin Imaging Collaboration
(SIIM-ISIC) often run image classification challenges to en-
courage research into the area. There have been several com-
petitions over the years with the most recent in 2024 com-
prising of a competition for skin cancer detection with 3D
total body scans. The 2020 competition Elwas chosen as it was
more accessible to those with limited resources. The compe-
tition involves classifying medical images of moles as malig-
nant or benign with accompanying tabular data including age,
sex and location to potentially assist with classification per-
formance. The performance of each of the submissions was
based on their Receiver Operator Curve Area Under Curve
(ROC-AUC) score. All of the top submissions on Kaggle
required extensive amounts of compute to achieve competi-
tive performance. Therefore, the purpose for the research in
this report was to explore a novel approach to completing this
competition in a resource-constrained environment by better
exploring the underlying dataset.

2. LITERATURE SURVEY AND BACKGROUND

Kaggle competitions allow participants to discuss and share
solutions to the competitions. This can be enormously bene-
ficial for research purposes but can often be detrimental in a

2The kaggle competition can be found| here.
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competition setting. Often what happens is individuals copy
solutions from other high performing individuals and tweak
some hyperparameters or run a slightly more complex model
to achieve marginal improvement in the model performance.
This leads to huge homogeneity in the leader board with lit-
tle to no additional thought about what specifically could be
done to improve the performance of the model. Addition-
ally, competitors often use significant external compute run-
ning on clusters of commercial grade GPUs for several days.
Although this often is one way to drastically improve model
performance as more data can be used to train the model, it
is also less accessible for those without the compute available
or for applications in a resource constrained environment.

Additionally, almost all of the submissions for this com-
petition made use of data that was released from previous
years and combined it with the data from the 2020 competi-
tion. This was done due to the highly imbalanced nature of the
dataset, containing only 1.76% positive samples. The primary
affect this had on the dataset was to stabilize the model per-
formance. Although effective, it technically compromises the
underlying purpose of the challenge which is to apply classi-
fication to extremely imbalanced data.

The winner of the Kaggle competition [4]] made use of an
ensemble of 18 image classifiers to achieve an average ROC-
AUC of 0.9442 on the test dataset. Ensemble methods work
by combining the outputs for several models into a singular
prediction which generally performs better than any singular
model. It is a very common approach and was used exten-
sively by other competition participants, by varying the image
sizes and underlying models being trained.

The issue with these models is that they often take signifi-
cantly longer to train with limited resource. Although impres-
sive, the 18 separate models combined with increased num-
ber of images, larger image sizes and 5-fold cross-validation
meant that it took several days to train on 8 Nvidia Tesla V100
GPUs. For most, this would require some form of cloud com-
pute for training. Despite GPU cloud computing becoming
more available and affordable in recent years, it may be de-
sirable to hold onto data and only perform computing offline
in remote environments or for data security purposes.[S] The
authors of the paper only use the tabular data on 4 of their
18 models, suggesting that they deemed it less important for
predictions.

This hypothesis that additional information does not af-
fect model performance somewhat aligns with research con-
ducted by K. Sies et al.[6] into sex bias of CNNs applied to
melanoma classification. The researchers concluded that a
market-approved CNN for skin cancer classification (Mole-
analyzer Pro, Fotofinder Systems GmbH, Bad Birnbach, Ger-
many) did not have sex related biases in its ability to carry out
melanoma classification. This is despite sex-related imbal-
ances in the ISIC database on 11th October 2021 which had
39.2% of all images classified as female, 48.0% as male and
12.9% as unknown. It should be noted that in this context sex

is defined as the biological definition of an X or Y in the 23rd
chromosome, and this definition is maintained throughout this
paper.

The image classifiers forming the backbone of the ma-
jority of the models submitted on Kaggle were mostly some
variety of EfficientNet [[7] or ResNet [8]]. Both of these mod-
els are forms of convolutional neural networks also known
as CNNs. EfficientNet is a special model in that it actively
adapts the depth and width of the model based on the in-
put image size making it highly efficient for a range of uses.
ResNet-18 implements an additional feature called residual
connections which act to reduce the effect of a property deep
learning networks called the vanishing gradient problem. It
works essentially by adding the weights from previous layers
to the current layer, i.e.x + F(x) =. A visualization of this is
seen below in figure
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Fig. 1. Diagram taken from original ResNet Paper showing
the functioning of a residual block in the CNN. [§]

There has been significant research into using Al models
for Melanoma classification with products now available on
the market for this exact task. It has been shown that derma-
tologists and medical practitioners formally trained in identi-
fying melanomas only had an average sensitivity of ;80%. [9]
In 2018, H.A. Haenssle et al. trained an off-the-shelf Google
Inception v4 CNN architecture using 100,000 images of der-
matoscopic images. [10] The study compared the model’s
ability to classify melanomas against 58 dermatologists, in-
cluding 30 experts, and showed that most dermatologists were
outperformed by the model. It demonstrates the importance
in the technology for all practitioners both experienced and
novice.

However, there has been some pushback in the medical
community to using Al. Producing models that are both in-
terpretable and explainable has been shown to be an impor-
tant factor in building trust and transparency in AI [11} [12]
and some medical applications give this as a priority over raw
performance [13]. Efforts to produce explainable ML mod-
els can be split into two classes: inherent and post-hoc.[14]
Models such as decision trees are directly explainable and so
have been more widely adopted by the medical community.



[L5} [16] This is in contrast to Deep Learning models which
are often considered black boxes. Several post-hoc methods
attempt to explain the outputs of these models by traversing
the neural network and often producing a heat map overlaid
onto the input image.[17, [18]] However, these methods are of-
ten criticized for various reasons, including lack of reliabil-
ity and introducing biases by humans over trusting computer
systems particularly those that are complex and difficult to
interpret.[[14, 15} [16]]

3. DESCRIPTION OF DATA

The competition includes 33,126 training samples with
10,982 additional for testing with no label given for com-
petition purposes. The images in the dataset are super high
resolution dermoscopic images of moles, often 4000x7000 in
size, making the complete dataset over 100GB in size.

The dataset also contained four additional data points for
sex, approximate age, location of mole on body and diagnosis
of mole. It was found that the number of males and females in
the dataset were relatively balanced at around 55% for males.
The distribution of the age ranges is centred around the 50
year old range in a normal shaped distribution. The location
of the moles was primarily located on the torso and the diag-
nosis was almost entirely in the unknown category providing
very little information.

Additionally, the dataset contains a column for patient ID.
Some patients had 115 images of moles in the dataset, how-
ever the majority of patients had between 0 and 5 samples in
the dataset. This aspect was important during the construction
of cross-validation and training datasets as described in sub-
section As a result, it was hypothesized that using less
data may be possible to achieve good performance by sam-
pling a small number of images from each patient.

As highlighted in section 2] there is a heavy class imbal-
ance in the data prompting many on Kaggle to use additional
data sources for training. To explore the effect this class im-
balance had on the data categories, several violin plots were
made to compare the relationships between the age, sex, and
mole location with the number of melanoma samples. A sam-
ple of one these plots can be seen in the appendix in Figure

The distribution of the data revealed distinct differences
between males and females in both the typical locations and
ages at which melanomas occurred. For example, Females
had only one recorded case of melanoma on the palms or
soles, whereas males had several. In contrast, males had only
one occurrence of melanoma on the oral or genital areas,
while females had multiple cases in those regions.

The primary objective of this data exploration was to
uncover potential areas where a mixture of experts (MoE)
model could offer tangible benefits. Specifically, the aim was
to determine whether this modeling approach could help ex-
ploit meaningful patterns or subgroup-specific characteristics

in the data, thereby enhancing the overall learning process
and model performance. MoE models are particularly useful
when different subsets of data exhibit unique traits that a
single, generalized model may struggle to capture effectively.

As highlighted by K. Sies et al. [6], convolutional neural
networks (CNNs) trained on a large dataset of over 100,000
dermoscopic images demonstrated minimal to no bias in sen-
sitivity when predicting melanomas across male and female
patients. This finding suggests that, when trained on extensive
and diverse datasets, CNNs may be capable of learning repre-
sentations that generalize fairly across demographic groups.
However, this may not hold true in the context of the current
study, which relies on a significantly smaller dataset with a
much more limited number of positive melanoma cases. In
such scenarios, biases are more likely to emerge, and the gen-
eralization capabilities of standard models may be impaired,
making a strong case for more adaptive or specialized mod-
elling strategies, such as mixtures of experts.

In addition to sample size limitations, their report [6]
also emphasized noteworthy differences in the visual features
present in male versus female dermoscopic images. For ex-
ample, it was found that images of male patients were far
more likely to contain visible hair, with 22.4% of the male
training dataset exhibiting this feature. Such disparities in im-
age characteristics can create challenges for models trained
on small, imbalanced datasets, especially when the presence
of hair or other artifacts affects lesion visibility or distracts
from clinically relevant features. These kinds of image-level
variations could introduce unintended biases or reduce model
accuracy, particularly if the model fails to appropriately ac-
count for subgroup-specific visual cues.

To explore better the portion of data contained in the
dataset with hair the images a random sample of 2500 images
from the complete dataset along with all melanomas (posi-
tive classification) were processed using an averaging filter
to obtain the general colour of each image. These images
were then sorted by brightness and plotted together in the
two matrices shown in Figure 2] The purpose of this was to
identify the differences between the colours of images in the
melanoma dataset and that of the rest of the images. In the
figures it can be seen that the melanoma images are generally
far darker in colour than of the rest of the dataset. This obser-
vation may have unwanted affects on the model performance,
possibly failing to generalize on patients with lighter skin.

To explore this further, two plots were generated, one con-
taining the five darkest and lightest images of the melanomas
(figure [3) and one of the benign moles (figure @). The pur-
pose of this was to understand the nature of the melanomas
present in the dataset. In the figures we see that to the un-
trained eye the lighter images of both models are quite simi-
lar. However the darker images of the benign moles are char-
acterized by additional features such as hair or lack of arti-
ficial light, whereas for melanomas the darkness appears to
the a result of the mole taking up the majority of the frame.
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Fig. 2. Processed Images Average Colours displayed in ma-
trices.
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Fig. 3. The five lightest and darkest images of melanomas in
the dataset.

This highlighted a potential area to investigate when evaluat-
ing model performance. For example, if the best performing
model struggles with dark images it may be a result of hair
covering the melanoma as opposed to the melanoma itself. It
also provides valuable information into model design as train-
ing a single classifier on darker images and one on lighter ones
may allow it to learn more quickly to ignore the affects of hair
rather than learn to classify all darker images a melanomas.
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Fig. 4. The five lightest and darkest images of benign moles
in the dataset.

4. DESCRIPTION OF MODELS

Convolutional Neural Network deep learning architectures
have shown to be some of the most effective architectures
for image classification of Melanoma’s often outperforming
Dermatologist.[T9]][10]]. However, these models often require
extensive amounts of data to effectively train as well as large
amounts of resources to effectively tune the hyperparameter
of the model. These models can be built by hand but often
require either deep expertise and hand-on experience to know
how many layers to use and what size of layer to use. As a re-
sult, for most using a pre-built CNN that has been pretrained
on large amounts of data is the preferred choice.

Pre-built models allow us to use architectures that have
shown good performance across a range of applications.
They also often implement more advanced features that help
to negate some of the consequences of using deep learning.
Using pre-trained weights allows models to be fine-tuned
for specific tasks on smaller amounts of data. This comes
from the models learning basic shapes and features on the
pre-training dataset which can then be used to extrapolate to
other problems. This is what is commonly known as transfer
learning, and helps to overcome the problem of overfitting to
the data which is where the model fails to learn features that
are important in the training data. [20]

CNN s are a form of Neural Network (NN) that have been
developed to be particularly well suited to 1D temporal sig-
nals such as sensor reading data and 2D signals like images.
They leverage local receptive fields within an image to extract
information that is tied together to reduce the number of pa-
rameters. This is extremely powerful allowing useful features
that have been identified in the image to be reused everywhere
else without having to be independently learned, resulting in
translation invariance.

These local receptive fields act as feature maps which fil-
ter the data using the sliding window technique, which con-
volves some weight matrix across the inputs of the image,
adding a bias and then applying a nonlinearity function to the
result. This is often done in multiple layers which then feed
into a fully connected NN. A simple diagram of a CNN can
be seen in Figure[5] The addition of a max pooling layer acts
to subsample the output in order to reduce the size and obtain
a small amount of shift-invariance and is commonly used in
CNNs due to better model performance.[21]]

A NN consists of a series of affine transforms followed
by some nonlinear activation. Each output and input are said
to be fully connected thus resulting in a network of so-called
perceptrons. If this nonlinear mapping is a logistic function
then the whole model can be thought of as a series of logis-
tic regression functions. An example of a neural network
along with a single perceptron has been drawn in Figure [6]
Whereby for one perceptron there is the following activation
function, where g is the nonlinear transformation, w repre-
sents the weights that are learned during training, a is the ac-
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Fig. 5. Schematic of simple CNN, taken from [22].

Fig. 6. Left: Simple schematic of a fully connected NN.
Right: Schematic of a simple perceptron.
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For multiclass classification tasks an additional softmax
transformation is applied at the output layer which essentially
acts a function to map the relative size of the model outputs
to a probability distribution, this is required for NN so that
the output can be interpreted as a confidence interval of its
predictions. For binary outputs the sigmoid function is used
which is essentially the softmax for a single output.

Traditionally, the parameters of CNNs are learned via a
gradient-based optimization method that aims to minimize
the error of some loss function that defines the relationship
between predictions and the outputs for supervised learning
tasks. To compute the weights of the model efficiently re-
quires efficient computation of the gradient of the loss func-
tion. This is achieved using backpropagation, which effi-
ciently computes gradients by exploiting the chain rule be-
tween layers of the model. The gradient-based optimization
method chosen depends largely on the use case.

Only ResNet-18 was used in this report, using pre trained
Imagenetlk V1 weights which are commonly used on pytorch
and have shown to have good performance.[23] The decision
to use pre-trained models was based on the way dataset has
been formulated to reduce training times due to the limited
compute, discussion of how the data has been formulated can
be found in section [5.1] ResNetl8 was chosen for its small
size and ability to handle vanishing gradients. EfficientNet

BO was tested but unfortunately dramatically increased com-
putation time likely due to the scaling nature of the model.

All models tested in this study were based on a base archi-
tecture, illustrated in Figure m with variations introduced de-
pending on the specific hypothesis under investigation. This
base architecture was adapted from the winning model of the
Kaggle competition [4]], chosen for its flexibility in handling
both tabular and image data, as well as for its relatively shal-
low depth—an advantage when working with limited data,
as deeper networks typically require larger datasets to gen-
eralize effectively. Additionally, this base model served as
a benchmark for evaluating the performance of modified ar-
chitectures, enabling a consistent framework for assessing po-
tential improvements. It is important to note that direct imple-
mentation of the original competition models would be inap-
propriate, given the substantial computational resources used
in their training, which far exceed those available in the cur-
rent study.
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Fig. 7. Base Architecture for Models Tested.



The base architecture differs from the one proposed in [4]]
in that a binary cross entropy loss function is used due to the
singular output as opposed to the cross entropy loss combined
with multi output predictor of diagnosis (which was also pro-
vided in the dataset but had very little information). This was
done to simplify the computation of the ROC-AUC metric
which can become somewhat obscured in the multiclass case,
as it requires a decision of the one-vs-one or one-vs-all for-
mulation. As a result, the sigmoid activation function is also
used, rather than the softmax at the output layer due to the
binary nature of the predictor.

The primary difference between the base architecture and
that of the additional ones is how the input image is processed
and whether the tabular data is used. The first additional
model splits the male and female data samples to train sep-
arate ResNet image classifiers using the tabular data to assist.
The second additional model splits images based on how dark
the images, it takes the brightness of the middle images of the
melanoma images after they have been sorted by brightness.

As discussed in section [3] the data within the dataset may
be better suited for a MoE model that is tailored to sex or
image brightness. To my knowledge, none of the solutions on
Kaggle explore this aspect, they solely rely on training on an
increased amount of data and training on different models of
different sizes. Thus, these models intend to explore whether
there are performance gains can by designing the models to
better suit the dataset.

5. IMPLEMENTATION

It was decided that all of the models would be run locally,
partly due to constraints of the assignment but also to explore
alternatives to the majority of the entries in the competition
which primarily cloud computing for their training over peri-
ods of days in some cases.

5.1. Data

To help with storage and computation all images were resized
to 256x256 pixels and downsampled to 60% of their original
resolution. Larger images were considered but this size was
deemed the most suitable for the hardware being used. The
data contained duplicate images which were removed along
with na values in the dataset. A get_data function was de-
veloped to convert the data to the desired format and to new
folders.

As highlighted in section [3]it was hypothesized that sam-
pling equally across each of the patients may help to reduce
the size of the dataset while also maintaining the diversity of
the dataset, which is necessary for generalization. To test this,
functionality was built into the code that allowed testing of the
models with both a smaller sample of the dataset and the full
dataset. This alternative dataset is termed the smaller dataset.

This new dataset contains only 3987 images compared with
the 33,126 in the original dataset.

The training data was split into validation and training
data. In most of the Kaggle competitions they did this by per-
forming k-fold cross-validation. This is computationally very
expensive and so the initial training data was split into train
and validation data with an 85:15 split. To ensure no data
leakage the images from the same patient only appeared in
one of the two datasets. For the smaller dataset, all melanoma
images were taken from the training dataset before sampling
2 images from each of the patients. The data was then split
into train and validation with the same split as before. All
of this was performed by sampling the CSV containing the
image IDs, patient IDs and tabular data. The “preprocess”
function performed all of this with the functionality to choose
whether to produce the smaller dataset. Additionally, tabular
data was preprocessed using one-hot encoding.

Synthetic data is a common way to increase the amount
of available training data. For image data, this is often a sim-
ple process by applying common image transformation such
as flips, rotations crops and colour adjustments. Alternative
more advanced methods include using Al image generators
such as diffusion models or Generative Adversarial Networks.
Some basic diffusion models were tested for this task but did
not produce promising results and due to the uncertainty of
efficacy were not explored further. Thus only standard image
transformations using the albumentations package including
an image flip, shift, scale, rotate and brightness adjustment
were considered. However, in testing the dataset with all the
images as well as synthetic images were too large to compute
in a reasonable amount of time (more then 1 day for a single
model). Instead, image transformations were only applied to
the small dataset so to increase the number of positive sam-
ples available for training without running into complexity is-
sues. Three and five augmentations per image were tested to
explore the effects of the transformations.

5.2. Models

Training of the models was carried out using checkpointing
to ensure the best model from all epochs is used. The batch
size was fixed to 64 to speed up training and the number of
epochs was limited to 10 which was more than sufficient for
all models, most of the models hit the early stopping crite-
ria of no improvements in validation loss for 3 epochs. The
learning rate was initialised at 1e~> and scheduled using a
cosine annealing schedule which helps the model to converge
more quickly. The adam optimizer was used for all models
for a similar reason.

The function “train” was developed to apply the early
stopping, check pointing and saving of the model as well as
validations after each epoch. It includes functions to train
the model for each epoch as well as validate after each. The
model computes many metrics after each epoch using an ini-



tial set threshold of 0.5, including the F1 score, precision,
recall, ROC AUC, and confusion matrix; saving them along
with the model weights to a directory.

Hyperparameter tuning of the models such as batch size,
initial learning rate, dropout rates and other model specific
parameters were not explored significantly due to the training
time of the models, over 5 hours for the base model with the
complete dataset.

Training and validation of the models was performed sep-
arately from testing as Kaggle does not provide the target out-
puts for the test dataset. Additionally, analysis of the results
was performed in a jupyter notebook away from the main
training pipeline for flexibility in analysis. Each model type
was tested on each of the five datasets, namely: all (all im-
ages), small (selection of images), small 3x aug (small with
three augmentations) and small 5x aug. The pipeline itera-
tively passes through each of the preprocessing steps avoiding
any redundant transformations by checking for images that al-
ready exist.

At the end of the training cycle, the best model from the
training batch was evaluated on the training dataset. It should
be noted that to ensure a fair comparison of the models, the
same validation dataset was used for model comparison. Due
to the formulation of the different datasets, this meant that
rows needed to be removed from the validation dataset to en-
sure there was no data leakage. The validation dataset used
was that of the "all images” datasets and so by comparing the
rows used in training for each of the smaller models, rows
could be identified and subsequently removed.

Training and Validation Loss Curves for Base Models
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Fig. 8. Validation and Training Loss curves for Base model
on four separate datasets.

After training, the loss curves for each of the models was
computed, the training curve for the base model can be seen in
[l Additionally, the training curves for the other models can
be found in the appendix. This was done to ensure the models
were trained correctly. Generally, it can be seen that some of
the models underfit to the validation data quite heavily, this is
discussed further in section

6. EXPERIMENTAL RESULTS AND ANALYSIS

The initial results showed that the sex-based and brightness-
based models were failing to train on the data resulting in
ROC-AUC scores that were no better than a random guess.
Despite efforts to rectify this, the models continued to underfit
the data. The only dataset where the sex-based or brightness-
based models did not completely underfit the data was when
all the images were used. The ROC for these two models and
their corresponding datasets can be found in the appendix in
Figures[I6]and[I7] Likely the reason for this is there is simply
not enough data for each of the classes to effectively train both
of the image feature extractors.

However, the base model does appear to be training well
and produces reasonable ROC-AUC scores across all four of
the datasets, as seen in figure[J] Interestingly, the base model
trained with the small dataset did not appear to perform sig-
nificantly worse than that of the model trained with all the
data. This is in contrast to the two previous models which
both needed more data to learn any sort of predictive features
of the data.

ROC Curves for Base Models
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Fig. 9. Base Model ROC for all.

It is likely that the reason for this lies both in the model
architecture but also in the information encoded into the data.
The base model is essentially twice as small as the sex and
brightness-based models. This often results in less data be-
ing required to learn predictive features in the data, obvi-
ously there is a balance here as too small of a model and it
will not be able to learn the more complex features of the
data. Likely due to prioritizing the melanoma data within the
smaller datasets, the useful information available to the model
remains high despite reducing the size of the dataset by nearly
an order of magnitude. Also, as samples are still maintained
from each of the individual patients, there exists a large di-
versity in the colour of skin and quality of the image being
captured.

It was decided that the base model would only be taken
forward at this point. To determine accurate values for the
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Fig. 10. Confusion Matrix of each of the base models with
optimized thresholds applied.

other performance metrics, the threshold was optimized for
each of the trained Base models to see how well the classifier
is actually performing. A report of the performance of the
Base model with the different datasets can be seen in[f]along
with the optimal threshold calculated. The optimal threshold
was calculated by maximising the F1-score and bounding the
true positive rate to between 0.8 and 0.9 to ensure priority for
correctly predicting more melanomas.

In it, it can be seen that the model trained with all the data
has very low threshold of 0.02. A value this low may cause
issues as the precision for predictions needs to be far higher
then with a higher tolerance, like that seen in the base model.
Additionally, it can be seen that the recall remains constant
across all of the tests indicating that they are all equally good
at predicting true positives, likely the most important metric
for an imbalanced dataset. To better illustrate this, confusion
matrices for each of the base models were created, as seen in

Figure[10]

Table 1. Table of metrics of the performance of the base
model at optimal thresholds as well as the ROC-AUC.

Model Threshold F1-Score ROC-AUC Recall
Base All 0.02 0.056 0.900 0.806
Base Small 0.28 0.041 0.868 0.806
Base Small 3xaug 0.10 0.033 0.856 0.806
Base Small 5xaug 0.11 0.027 0.834 0.806

The lack of effect of the augmented images is also in-
teresting. It shows that the model is able to learn as many
important features with a smaller amount of data, and actu-

ally has better performance overall. Likely the reason for this
comes from the augmentations causing a slight overfitting to
the data, as once the important features are extracted addi-
tional data may only result in overfitting unless the model ar-
chitecture is changed.

Not only did the base model with the small dataset per-
form remarkably well compared with all the data, it also
trained in a far shorter time requiring less than 30 minutes
to train compared with over five hours for the base model
with all the data. This result reinforces the importance of
using data that is high quality and diverse, and not simply
numerous.

To better understand where the base model trained with
the small dataset was performing incorrectly, six true positive
and false negative images have been shown in Figures|TT]and
Visually, it is very hard to distinguish the difference be-
tween these samples, however within the false negatives there
are three mole that are generally far smaller then that in the
True Positives. This may indicate that the model may not be
seeing many examples of small melanomas in the dataset or
that the dataset contains far more examples of small benign
moles then small malignant ones.

True Positives (Malignant correctly predicted as Malignant)
Pred: Malignant, True: Malignant Pred: Malignant, True: Malignant
Prob: 0.345 Prob: 0.699
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Pred: Malignant, True: Malignant Pred: Malignant, True: Malignant
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Pred: Malignant, True: Malignant
Prob: 0.365
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Fig. 11. True Positive Predictions from the Base Small model.



False Negatives (Malignant predicted as Benign)
Pred: Benign, True: Malignant Pred: Benign, True: Malignant
Prob: 0.278 Prob: 0.132

Pred: Benign, True: Malignant Pred: Benign, True: Malignant
Prob: 0.238 Prob: 0.184
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Fig. 12. False Negative Predictions from the Base Small
Model.

As with almost all ML problems more data is beneficial,
particularly melanoma data points in this case. The model
needs to see more examples of all types of melanomas to be
able to accurately predict them all. The idea of generaliza-
tion for CNN models is quite difficult to achieve particularly
on very imbalanced datasets like this were there simply isn’t
enough information in the melanoma samples.

As with all Kaggle competitions, the final model can
be ranked against other users on a completely unseen test
dataset where for this competition only a ROC-AUC value
is given. For this competition the Base model trained on the
small dataset achieved a ROC-AUC of 0.845, placing it in the
middle of the leaderboard with first place coming in at 0.949.

7. CONCLUSIONS

This study explored alternative approaches to melanoma clas-
sification using limited computational resources, challenging
the common practice in competitions of relying solely on ex-
tensive data and computational power. The primary objec-
tive was to investigate whether thoughtful dataset construc-

tion and model selection could achieve competitive perfor-
mance without the extensive resources typically employed in
Kaggle competitions.

The most significant finding was that carefully selecting a
smaller, more balanced dataset (3,987 images) yielded com-
parable performance to using the full dataset (33,126 images),
achieving a ROC-AUC of 0.868 on the validation set and
0.845 on the competition test set. This represents a substan-
tial efficiency improvement, reducing training time from five
hours to just 30 minutes while maintaining competitive per-
formance. The smaller dataset was constructed by strategi-
cally sampling across patients to maintain diversity while pri-
oritizing melanoma samples, demonstrating that data quality
and diversity can be more important than sheer quantity.

While the specialized mixture of experts models (sex-
based and brightness-based) underperformed due to insuffi-
cient data for separate feature extractors, this investigation
revealed valuable insights about model complexity and data
requirements. The analysis of true positives versus false neg-
atives suggested that model performance could be improved
by ensuring better representation of small melanomas in the
training data.

This research contributes to the field by demonstrating
that resource-efficient approaches can achieve respectable re-
sults in medical image classification tasks. For practical ap-
plications in resource-constrained environments like remote
healthcare settings, our findings suggest that optimizing data
selection and model complexity may be more beneficial than
simply accumulating more data or computational power.

Future work could explore more sophisticated methods
for constructing balanced, representative datasets, investi-
gating other potential splits for mixture of experts models,
and developing ensembling techniques that maintain com-
putational efficiency while improving overall performance.
Additional attention to model interpretability would also be
valuable for clinical applications, as trust and transparency
remain essential factors in medical Al adoption.

Overall, this project highlights the value of thoughtful
dataset construction and model selection in achieving effi-
cient, effective melanoma classification, potentially making
such systems more accessible in resource-limited healthcare
settings.
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Fig. 14. Validation and Training Loss curves for Sex-based
model on four separate datasets.



Training and Validation Loss Curves for Base Models
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Fig. 15. Validation and Training Loss curves for Brightness-
based model on four separate datasets.

ROC Curves for Brightness Models
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Fig. 16. ROC for the Brightness-based model.
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Fig. 17. ROC for the Sex-based models.
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